Queen’s Award 2016 – the story

We were recently interviewed for a story by our local Chamber of Commerce.  This is the result:

Litre Meter on the front cover of InBusiness

Litre Meter on the front cover of InBusiness

Specialist global flow measurement company Litre Meter has come a long way since its conception in 1975.

Set up in the attic of the Wemyss family home – with a calibration rig in the boiler house and a flow lab in the cellar – it was inevitable for a teenage Charles Wemyss to get involved in the family firm established by his father.

Litre Meter provided flow measurement engineering solutions that were ahead of its time and was set up to create one particular product, the Pelton Wheel – designed as a low cost economical meter for flow.

Charles said: “The product line was unusual at the time but now there are far more competitors to it. We still make it and it is still our company logo.”

From age 12 Charles worked in the business in school holidays but despite the cutting edge products and the company’s impressive initial success, he was uninterested in following in his father’s footsteps.

But when his father tragically died in a road traffic accident in 1978, the future of the company lay solely in the hands of Charles and his mother.

And they have done him proud.

Litre Meter has gone from strength to strength and cemented its presence as an international market leader in the flow measurement field, exporting products worldwide.

Now with a 16-strong team and manufacturing and selling from a converted barn in the North Marston countryside,  unprecedented sales over the past three years have recently been recognised by Her Majesty the Queen.

Litre Meter was awarded the UK’s highest accolade for sustained business exporting success – The Queen’s Award for International Trade.

Charles, now Litre Meter CEO, tells inbusiness: “We had two very successful years which were recognised in turnover and profit but this was a different recognition altogether. It was barely believable.

“It means as much abroad as it does here as a symbol of achievement. It provides a reassurance for our clients that we are of a certain standard.”

The award recognises continuous achievement, through sustained international trade. Litre Meter were praised for their enviable reputation, excellence in design and manufacturing, investment in British Engineering Excellence and service to the global oil and gas market.

“Our vision has always been to become the most respected specialist flowmeter measurement company in the world and this award reflects our continued commitment to that goal,” said Charles. “My father would have been immensely proud.”

In 2013 and 2014 Litre Meter enjoyed its most successful period ever, winning more orders in two years than in the previous six years combined.

This was driven by an increasing presence in the oil and gas sector, which has led to a substantial increase in export business. Over 65% of Litre Meter’s sales are exports.

Charles said: “There are some solutions we’ve got that no one else can do in the world so there’s no competition. We can do much lower flow rates and much higher pressures than most people and that means we can keep pushing those boundaries and keep innovating – that keeps us competitive.

“Our big market – where we sell more than half of our equipment – goes offshore to the oil and gas industries and they need those higher pressures and lower flows.”

But it hasn’t all been plain sailing in recent years, there have been many challenges along the way.

Charles recalled: “The most difficult time was the recession in early 2009. It was very tough. We had put together an ambitious plan and presented it to the staff in the January. We called it 5 x 14 – to triple our turnover in five years. Two months later we had to reduce all staff to a three day week.   The drop in the oil price really affected us then.

“We did get to 5 by 14 – we had £5 million worth of orders in one year.”

A key development that has led to this stupendous success was the manufacture of the Viscous Fluids Flow Meter (VFF), which was originally designed in the mid-80s.

“That’s the product that lifted us and took us to where we are now,” said Charles, who fully took over at the helm of Litre Meter 12 years ago.  “It was the right product at the right time. We spent many years refining the product to match the customer’s need, coupled with a worldwide expansion in the market we designed it for and the two things came together quite nicely.”

Litre Meter was sold in 2011 to a large conglomerate, but Charles still sees it as a family firm.

“My proudest achievement is keeping all these guys employed for such a long time. We might now be owned by an enormous American privately owned group but we are still 16 people in a field in North Marston.

“The success we’ve had – and what you don’t realise when you’re in the middle of it – was a big team effort.”

Charles accepted The Queen’s Award for Enterprise from Her Majesty at Buckingham Palace this summer.


FACTFILE

ON YOUR CAREER: “I studied mechanical engineering at Sheffield. I graduated in the June/July and was working here at Litre Meter by the September.

“My tutor at Sheffield was head of the flow measurement lab but I had no interest in flow at all. It was the last thing I wanted to do. But I was sick of cleaning the hospital (straight after university) so I rang the MD of Litre Meter and he had just fired his chief engineer.”

DESCRIBE YOUR COMPANY: “We sell and manufacture flow meters and we vary our designs to meet customer requirements. A lot of the jobs are customised, bespoke, made to measure.”

JOINING THE CHAMBER: Litre Meter save money every year by using our International Trade team for export documents. “The service is first class,” said Charles.

Queen’s Award Presentation 2016

We were thrilled to welcome Alexander Boswell, Vice Lord-Lieutenant of Buckinghamshire to our factory last month. He brought with him not only an engraved bowl but also our official scroll. The bowl is engraved with the logo of the Queen’s Award and the official title which is: Queen’s Award for Enterprise- International Trade 2016. We were grateful for a precise speech and official presentation and then Charles Wemyss our CEO said a few words followed by photographs. We were joined by Val Letheren, the Chairman of Buckinghamshire County Council and Jenny Bloom, Chairman of Aylesbury Vale District Council.  Many thanks to Joe Bradshaw Assistant Clerk to the Buckinghamshire Lieutenancy who organised all the VIPs so well. The bowl was handed to Alexander Boswell by the Aylesbury Sea Cadet of the Year.

We’re often asked how we managed to achieve such a striking increase in our export sales. Having worked through it we should know this. Looking back we narrowed the factors down to 5:

  • Firstly, we have a great product, that we keep developing. We target that 25% of our turnover comes from developments in the previous three years. For example, the LF05 size, was introduced in 2012 and soon became our most popular size. More recently, the refreshed VFF range with FlowPod display will be even more desirable.
  • Secondly, we have built up a terrific sales team, both in-house and with our distribution network abroad particularly in the US and South Korea. Our own Chris Ringer has swung many orders. His skill with the Shah Deniz 2 project was exemplary and 135 meters totalled £1.4m all told through 2 separate customers, aided by our great product and flexibility.
  • Thirdly, we made a big step forward on Chevron Jack St Malo in 2011/12 which laid the groundwork for meeting the ever increasing engineering challenges.
  • Fourthly, the Deepwater Horizon accident set new standards and introduced more caution to specifications.
  • Lastly, economic climate including oil price. That’s stability coupled with historic higher oil prices.

There were just 150 winners in the UK this year, whittled down from an extensive entry list of 600 or more.

Litre Meter CEO Charles Wemyss accepted the Award from the Vice Lord-Lieutenant

Litre Meter CEO Charles Wemyss accepted the Award from the Vice Lord-Lieutenant

The CEO accepts the Award bowl.

The CEO accepts the Award bowl.

A cake in Litre Meter's honour

A cake in Litre Meter’s honour

Dimethylformamide (DMF) measurement with Tricor

TRICOR_Chemical_Manufact._DMF_EN_spotlight_160705_E002

DMF (Dimethylformamide, N,N-Dimethylmethanamide, (CH3)2NC(O)H) is a clear liquid organic solvent used in a number of industrial processes, particularly in the manufacture of polyurethane products, pesticides, electrical equipment, pharmaceuticals, and synthetic leathers and fibres. The Tricor coriolis meter proved itself on this technically challenging application using standard equipment.

 

Tricor coriolis mass flowmeters used in the flow measurement of DMF

Tricor coriolis mass flowmeters used in the flow measurement of DMF

TECHNICAL DATA:

Medium: DMF

Pressure: >4 bar

Density: 995 kg/m3

Viscosity: 2 cSt

Flow range: up to 20,000 kg/h / 50,000 kg/h for loading and unloading

Flow range: up to 12,000 kg/h / 25,000 kg/h for product supply for a PU coating agent into the reactor.

 

TRICOR PRODUCT SUPPLIED:

TCM 028K Coriolis Mass Flow Meters (28,000 kg/hr max)

TCM 065K Coriolis Mass Flow Meters (65,000 kg/hr max)

TRICOR_Chemical_Manufact._DMF_EN_spotlight_160705_E002 Brochure

http://www.litremeter.com/Coriolis/Tricor_Flowmeters.php

Coriolis

Tricor coriolis mass flowmeters used in the flow measurement of DMF

Expert advice on flowmeters and calibration

Charles Wemyss lists 10 reasons why you should – and should not – calibrate your flowmeter

We use the word flowmeter to describe a device that measures the flow of a fluid. Mostly we’re considering gases or liquids in a closed pipe or conduit and we need either the instantaneous flow rate or the total amount of fluid that has passed. There are many varieties of techniques dependent on the fluid being measured and dependent on the flow rate, pressure, viscosity and more. The flowmeters range from miniature positive displacement devices to large electromagnetic or ultrasonic units used for pipes over 3m diameter. The way we garner confidence in the displayed value is through calibration.

Most flowmeters are supplied by the manufacturer with a ‘laboratory’ calibration. In other words, they have been tested in close to ideal conditions. Depending on the meter type, once installed in your process, that original calibration may be valid – or it may not be.

Litre Meter’s latest rig FlowLabPro is designed for calibrating ultra-low flowmeters

There are a number of key reasons why it should be calibrated:

* To reflect the new, current conditions

* Because some component has a wear factor

* There is an accumulation of dirt or setting product, affecting the sensor

* Because the calibration frequency states it has to be

* Because the results don’t feel right compared to the rest of the process

* The process is producing poor quality product yet the flowmeter seems stable.

The best calibration is that which is performed in situ. Many of the variables are tuned out. The fluid is the same, as is the installation attitude, straight lengths, etc. That’s the precise reason why you should re-calibrate; it gives you that confidence in the device. If in situ is not possible, for example, when the fluid is hazardous or at high pressure then it has to be uninstalled and calibrated elsewhere.

Why shouldn’t it be calibrated?

Clean versus dirty is the first argument for not calibrating your flowmeter. If it comes out of the line dirty and is sent away for calibration then you’d normally expect to ship it clean. The test lab calibrates it in the clean state. However, as soon as you re-install it the process might be depositing dirt back on it. It has been calibrated for a perfect installation and is almost immediately imperfect.  In this scenario, calibration is pointless.

Next, it’s hard to compare installation to installation. All calibration laboratories pride themselves on making adequate provisions for calibration, especially good installation practice. If they’re testing a turbine meter, for example, then they should have a long length of correctly sized piping before the meter – and a length after, too. This eliminates swirl, if it’s long enough, to generate a flat flow profile and present optimum conditions to the meter. Most labs have this setup for horizontal installation – so if you have a vertical install, then watch out. Likewise, if you don’t have a long length of correctly sized pipe, or perhaps a connector that necks the diameter down a few percent, then don’t bother. The results they give you will be meaningless.

The Litre Meter low flow rig FlowLabPro delivers automatic calibration of flowmeters and instrumentation within a flow range of 0.0006 to 200 l/hr to an accuracy of ±0.2%

Next you should ask whether it is the right fluid. Unless your process is running clean water or, maybe a calibration fluid, then your average lab will not be able to calibrate with the same fluid. For some flowmeter types this may not be important. For example, if you fluid is a weak acid with a viscosity of 1.2cP and the meter is an electromag, then the calibration with water will be perfectly valid. Contrarily, if you have 10cP process fluid and it’s a turbine meter then it could be very important that the test fluid is in the 9 to 11cP range to adequately represent the effect of viscosity on meter performance at lower flows.

Traceability is next on the list. If you have been able to clear the hurdles above then it’s important you pick a lab that has the right traceability for you. If your process demands an indication of flow within +/- 4% then there’s little point on getting a UKAS-accredited laboratory with an uncertainty level of 0.22%.

We’re regularly asked ‘how often should it be calibrated?’ Recalibration periods of flowmeters are based on industry standards. In industrial applications, depending on the industry, periods of six to 12 months are recommended. We advise the user to seek out data relating to the process, other components within the process and the usage of the meter. If the measurement is critical then the recalibration should be more frequent than a non-critical, rarely used device. In the absence of any other data we advise an annual check and to vary the future calibration periods depending on results.

If it has remained unused then no recalibration may be necessary, depending on the meter type. It is wise to check that no fluid has settled in the meter that might alter the way the meter works or even cause corrosion. In the event of any doubt then the manufacturer is always your best source of advice.

{originally published in International Process Engineer in May 2016, www.engineerlive.com}

LITRE METER RECEIVES A QUEEN’S AWARD FOR ENTERPRISE

We are delighted to celebrate being one of the select businesses recognised as winners of the 2016 Queen’s Award for Enterprise – the UK’s highest accolade for business success.

Litre Meter awarded Queen's Award for International Trade

Litre Meter awarded Queen’s Award for International Trade

Our award was received for Enterprise in International Trade and was in recognition of achieving significant year-on-year growth of export sales from 2013 to 2015.  In turn, this helped us achieve record increases in turnover and profits resulting in a Compound Annual Growth Rate of 48%.

 

CEO Charles Wemyss: ‘As a very specialist company working on an international basis from the middle of a field in Buckinghamshire it is an outstanding achievement to be recognised at the highest levels for our success.’

 

Litre Meter was established as a family business in 1975 by the current CEOs father, where it moved to Buckinghamshire in 1978. Today, Litre Meter is recognised as the world’s premier Flow Measurement Specialist, employing home grown talent in a converted barn in North Marston.  Our highly engineered products are used in various industries throughout the globe, such as the Oil & Gas sector, where they can be installed on platforms in some of the deepest seas and most arduous environments. We pride ourselves in using local suppliers for our materials, where possible and are proud to be an active part of the UK’s engineering heritage.

 

Notes for Readers

  • 249 Queen’s Awards (QA) have been announced in 2016 for outstanding business achievement in the fields of International Trade, Innovation and Sustainable Development. Winners of The Queen’s Awards can expect an invitation to attend a special reception at Buckingham Palace.
  • QA winners can also use The Queen’s Award Emblem in advertising, marketing and on packaging for a period of five years as a symbol of their quality and success.
  • The awards are made annually by HM The Queen and are only given for the highest levels of excellence demonstrated in each category.
  • To find out more about next year’s awards visit the Queen’s Award website.
  • Litre Meter, based near Buckingham, UK, was established in 1975 and specialises in the custom design and manufacture of instruments for measuring and controlling fluids.
  • The company has particular expertise with offshore and sub-sea flow measurement and has supplied flowmeters for these applications throughout the world. The company’s VFF flowmeter was developed specifically for the petrochemical industry.
  • Litre Meter also pioneered the development of the Pelton wheel flowmeter, an accurate and versatile technology that has since been used across many industries to measure a variety of low viscosity liquids at both low and high flow rates.
  • Since 2011 Litre Meter has been part of the TASI Group of companies which includes AW-Lake, KEM and TRICOR.
    Rotary Piston Litre Meter flow meter with Hub connectors for high pressure flow measurement

    Rotary Piston Litre Meter flow meter with Hub connectors for high pressure flow measurement

     

    Litre Meter FlowPod flowmeter instrumentation

    Litre Meter FlowPod flowmeter instrumentation

Litre Meter operate out of a barn in the rolling Buckinghamshire countryside - Hart Hill Barn

Litre Meter operate out of a barn in the rolling Buckinghamshire countryside – Hart Hill Barn

Are there any size limitations?

    When specifying flowmeters how does size affect meter selection?

  1. Can you specify the available pipe length? Some installations are very limited on installation length and meter selection can be pivotal. Assume that the number straight lengths before and after the meter (but, see below) isn’t relevant for the moment and all meters are available: If there’s only 1 diameter of straight pipe then the PD meter is probably the Number 1 choice. There’s likely very little room so larger meters like the Coriolis, which is a ‘bulky’ technology, are too long, even if they, too, need no straight lengths: that’s not strictly true but that’s another story entirely.
  2. Width: Does the unit have to fit in a narrow space? Perhaps there’s a wall one side -the meter can’t overhang that side, but is it then facing the right way?
  3. Does the installation space enable the unit to be provided with a local display – which is facing the right way? or will it need to be a remote mounted version?
  4. Is there access for maintenance? Is that all important termination panel just in front of you or is it tucked beyond a stem in a dingy corner of the installation. How good are you at holding a mirror?
  5. If it’s remote mounted – how far away can the display be? ie. what’s limit on the length of cable?
  6. If it’s remote mounted – is that panel mount, wall mount or post mount? Any special mounting considerations like weight, panel size, panel thickness?
  7. Height If it’s not a length or width then height might be an issue. Perhaps the meter can be/ needs to be installed upside down? Maybe there’s a bunch of pipe in close proximity.
  8. Are there weight limitations? On vehicle and aerospace installations the weight can be an overriding factor in meter selection. Are there weight reduction regimes? Changing the connection type or reducing a flow meter size or changing to a lightweight material can have significant effects on weight. A threaded turbine meter can be a tenth of the weight of a flanged coriolis.
  9. Does the meter type require straight lengths before (and after) the meter? Some meters are better than others. Some are much worse than others. A turbine meter needs a minimum 10 lengths before the meter and 5 lengths after. Orifice plates are meant to have more before depending on prior pipe configuration to ensure swirl is minimised.
  10. What comes before the straight lengths? If its two bends in 2 different planes then that’s a great recipe for swirl. Up to 100 lengths of pipe after that will be required to eliminate the swirl.
  11. What methods can reduce pipe lengths? One valid suggestion is to use flow straighteners or plates. These can be as little as 1 diameter long, but with a pressure loss, knock out some flow profile imperfections. They aren’t necessarily commercially available nor cheap. Perhaps, have a look at another measurement technique?

All in all consult the specialists.
Ten top tips for flowmeter selection

Do you know your fluid?

Do you know your fluid? Is it what you think it is? Is it from a known source?

Viscosity, varies with temperature. Is flow measurement going to be affected by viscosity change due to temperature anyway? Might be if the temperature range is large and it’s a Variable Area meter… Will the fluid be changed through the life of the system, introducing different viscosities; meter choice is important here.
Viscosity change over time. due to volatility of light compounds it’s likely, especially if exposed to the atmosphere, that viscosity will increase over time. Possibly if water is leaking into the flow stream or condensation in the process that the viscosity will decrease.
Viscosity changes due to pressure. These are known but fairly small changes compared with temperature effects. Viscosity can double between atmospheric pressure and 2,500bar.
Specific Gravity, Density. These are often quoted in Material Safety Data Sheets (MSDS). For some flowmeters it’s irrelevant, especially if the measurement principle is volumetric; for others, like VA it’s fundamental. And remember density changes with temperature. In general, if you want a mass flow rate or total then use a mass flowmeter (and vice versa).
Thixotropic? A shear sensitive liquid can be tricky for some measurement principles. To preserve the fluid at normal viscosity the rate may have to radically reduced. Typical thixotropic liquids encountered are paints. When stirred they change from a ‘gel’ to a more free flowing liquid.
Corrosion issues: chemical compatibility. Perhaps the first property that is investigated in meter selection is the chemical nature of the fluid being measured. Is it going to corrode any of the components or will it react with the materials and change some dimensions or shape? If a table found on the internet indicates that polypropylene is ‘compatible’ with fluid X will it be suitable for some close fitting parts where just a 1% expansion will stop the meter going round. 1% may indicate, to some people, that it is compatible.
Build up, formation. Slow or fast deposition on the inside of the pipe and other, more sensitive parts, inside a flowmeter may affect the internal diameter used for rate calculations on velocity based devices or the weight of a rotating part or simply stop a part meshing or rotating.
Solids content and solids size. Generally expressed as a percentage, the amount of particulate and the size of that particulate will govern the metering method. And it may not be obviously so. Some of the latest paints have small amounts of additive to give the paint a special quality. These will block a tightly toleranced PD meter or it’s bearings.
Filter size. Is it filtered? Is the filter mesh in the filter bowl or has it been removed because it keeps clogging up?! What level of filtration, NAS class, mesh size, is designed in and what level has been achieved. Is it well filtered but then stored in an open container?
Lubricity. This parameter is frequently ignored and frequently not known. It can have an effect on some flowmeters.
Homogeneous? It’s usually taken for granted that fluids are homogenous i.e. the same consistency at any point. A typical non-homogeneity is air entrainment, perhaps a few bubbles or a stream of bubbles. In extremis, this might be slugs of air passing through. Most flowmeters can’t cope with this phenomena but some make a decent estimation and more than a few will recover after the air passes.
Anodic acceleration of corrosion. This problem occurs when the fluid acts in concert with two dissimilar materials in the pipeline – for example, the flowmeter body and the pipework. The measured fluid acts as an electrolyte, depositing or removing material depending whether the materials act as anodes or cathodes. In some instances another wetted part may see accelerated corrosion.

All in all, consult the specialists. www.litremeter.com

Ten top tips for flowmeter selection.

What is a flow meter and how does it work?

Flow gauge, flow indicator, liquid meter, flow meter – they’re all the same thing; depending on the industry they may have different names, but their function remains the same: to measure flow.

In the simplest of terms, a flow meter is a device which is used to measure the quantity and/or flow rate of a gas or liquid as it moves through a pipe. Some flow meters measure the amount of fluid that passes through the pipe in a given time, while others measure the total amount of fluid or gas that has passed through the flow meter.

 

How do flow meters work?

Flow meters consist of three parts: a primary device, a transducer, and a transmitter. As the fluid passes through the primary device, the transducer senses it; the raw signal from the transducer is then sent to the transmitter and turned into a usable flow signal.

Mathematically speaking, a flow meter typically uses the following equations:

  • Q = A · v – Where the volume of fluid passing through a flow meter is equal to the cross-sectional area of the pipe (A) multiplied by the average velocity of the fluid (v).
  • W = r · Q – Where the mass flow of fluid passing through a flow meter (A) is equal to the fluid density (r) multiplied by the volume of the fluid (Q).

 

Different types of flow meter

There are a number of different types of flow meter available, each one suited to a different purpose, but always with the same goal of measuring the flow of a fluid or gas through a pipe.

  • Positive displacement flow meters: As the only meters to measure the actual volume, positive displacement meters work by repeatedly filling and discharging fluids from a chamber. Also known as volumetric flow meters, or rotary piston meters due to the way in which they operate.

    Rotary Piston flow meter with Hub connectors

    Rotary Piston Positive Displacement flow meter with Hub connectors

  • Inferential flow meters: These types of meters don’t measure volume, mass, or velocity. Instead they measure the flow of a fluid by inferring its value from other measured parameters such as differential pressure.
  • Velocity flow meters: The flow of fluid through the pipe is measured by the velocity of the flowing stream in order to determine the volume of the flow.
  • Mass flow meters: A mass flow meter, also known as an inertial flow meter, measures the flow rate of the mass of fluid as it travels past a fixed point during a specified unit of time.

 

What type of flow meter do I need?

There is no one-size-fits-all solution when it comes to flow meters. It largely depends on the industry you’re in, and what the flow meter will be used for. Here at Litre Meter we’re the flow meter experts, so we can help you to choose which type will work best for your needs, but here are a few questions to ask yourself before looking into purchasing a flow meter for your company:

  • What gas or liquid do I want to measure?
  • What level of accuracy do I require?
  • What is the temperature and viscosity of the fluid?
  • Does the fluid flow continuously or intermittently?
  • Will the meter be mounted in a safe or hazardous location?
  • What are the minimum and maximum flow rates?
  • What is the maximum pressure at the location?
  • What level of pressure drop is allowable?
  • Is the fluid compatible with the materials used in the flow meter?

Each type of flow meter has a different set of applications and constraints, so the best way to choose the right one is to use the application of the equipment, rather than the technology, to guide you in your choice. Once you know the answers to some or all of these questions speak to us and we can help you to determine which flow meter will best suit your needs.

Top tips for selecting the right flowmeter for you

At Litre Meter, we want to make sure that you get the most for your money when it comes to buying a flowmeter, so we’ve put together our top tips for selecting the right device for you…

Made to quantify the rate that liquid or gas moves through it, flowmeters are required by test and measurement professionals to provide results in a wide variety of applications where accuracy is critical. This includes measurements for familiar household things like heating, ventilating and air conditioning to aerospace and agriculture.

Type of flowmeter

There are different types of flowmeter to suit different purposes and applications. By simply profiling the gas or liquid it is measuring, it’s possible to discover how it behaves when flowing through a pipe. You can then narrow down the choice of device to best cope with the conditions of the application. If you’re unsure about how to do this, get in touch with a professional and they’ll be able to help.

Purpose

There are a number of different uses for flowmeters, and as we’ve just mentioned, whatever you intend to use it for will affect your range of choice. You must consider temperatures needed, the turndown ratio, whether or not it has to be user-friendly for the workplace, and the type of liquid or gas that it is measuring the rate of. For example, if fluid containing traces of silt or sediment is flowing through the pipeline, we’d suggest that you use an ultrasonic Doppler flowmeter.

Chemical compatibility

It’s really important to take into account the materials involved in the process you intend to carry out with the flowmeter. Some materials are not compatible and this can have an effect on both the fluid or gas quality and the flowmeter’s durability. Check each material separately against a reputable chemical compatibility table, and checking your selection with the manufacturer of the fluid is also a wise idea to avoid any potential problems or issues.

Price

Whilst buying a cheaper device may tempt you by saving you money initially, it could actually end up costing you more in the long run. Don’t let short-term savings sway you and think about it practically; a higher priced flowmeter can be more cost-effective in its quality, its back-up and its durability.

LongevityVFF with FlowPod instrument.

Talking of durability, before purchasing the device, you should find out how long it typically lasts. Ask the supplier about its failure rate or the type of application you need it for. This may have an impact on the price, but by evaluating the total life cost of it, you will most likely find it to be worthwhile.

Installation

It’s also important to think of the installation before selecting your flowmeter. Consider exactly where and how it will be installed as this can hugely affect its accuracy and efficiency. You must think about the type of meter and whether it’s affected by any obstructions in the pipeline like joints, bends or valves as these could cause distortions to the flow.  This is all worth doing because if the device is installed correctly in a suitable application, it will be more accurate and will ultimately save you money.

If you need help in selecting the best flow meter for the job, our Litre Meter team will be happy to help. Simply get in touch via our Contact Form or give us a call on 01296 670200.

We want your opinions

Survey 1We recently launched two new annual opinion surveys – building on a number of surveys that we have conducted in the past –to examine industry trends.

The new surveys look at the challenges facing manufacturing and production, regulation, safety, international standards and general trends. One lucky respondent will win a Kindle for taking part.

One survey is specifically for oil and gas, the other is for the general process sector.

Meeting the requirements of safety standards including safety integrity levels (SIL), pressure equipment directive (PED), positive material identification (PMI), ISO17025 and the control of major accident hazards (COMAH) can help to avoid the potential failure of a critical component which could lead, in the worst case, to a catastrophic failure of a process and loss of life.

There has been increased focus on safety issues in the offshore and process sectors over recent years. We want to make sure that our manufacturing focus is on safety in relation to both the environment and industry trends.

Issues surrounding the environment and hydrocarbon releases, asset aging and life extension drive the focus on safety. We want to be able to help in the process of recognising hazards and reducing risk as well as help engineers to take ownership of risk and asset integrity through proving assertions about the functionality and construction of instruments.

Asset integrity management ensures that the people, systems, processes and resources that deliver integrity are in place, in use and will perform on demand over the asset’s lifecycle.

Being able to prove assertions about the manufacture and functionality of equipment are vital in this process.

That’s why we are seeking the views of design engineers, industry leaders and decision makers across industry.

To take our survey – and perhaps you could win a Kindle – visit http://tinyurl.com/LM-Process or http://tinyurl.com/LM-oil-and-gas and spend just a few minutes answering the questions.

The versatile VFF

Litre Meter was founded 40 years ago as a manufacturer of industrial flowmeters. Today, the company still manufactures flowmeters, but with a slight shift in focus – more than 80% of its products are designed specifically for the harsh conditions of the offshore oil and gas industry.


The shift towards offshore supplying happened largely due to Litre Meter’s ability to engineer new products, as many offshore oil and gas rigs require custom-built flow measurement solutions for chemical injection; however, the ability to engineer new products has sometimes been a setback for Litre Meter, as the majority of orders would often require custom engineering despite the company’s extensive catalogue of standard products.

Litre Meter defines its company by the strapline, ‘Specialist flow measurement engineering’, representing four of its unique and client-oriented company principles:

  • Specialist: Litre Meter is a specialist manufacturing company, focusing solely on products for measuring flow, rather than level or pressure.
  • Flow: its products drill down into the finer flow details, such as flow rate and flow total.
  • Measurement: its products measure flow accurately – they are not flow switches or flow indicators.
  • Engineering: although it offers a catalogue of standard products, Litre Meter can engineer bespoke solutions for unique challenges.

The VFF series

Litre Meter’s shift in focus began a little over 25 years ago, when it first adapted a standard industrial flowmeter for use on a North Sea oil rig. The popularity and success of this custom device led to the eventual production of their flagship range: the Viscous Fluids Flowmeter (VFF) series.

The VFF series is hugely popular and very adaptable, but its standard range has still been largely overshadowed by a flood of custom orders – until recently. One of the innovations for the 2015 range of VFFs included a new by-product: the FlowPod. The device itself is two-wire and fully HART compatible, with stainless steel housing. It opens up the popular VFF series to an even wider range of low-flow applications, and gives even the most obscure requirements near-instant access to Litre Meter’s innovative engineering without the need for custom designs.

Introducing the FlowPod

Flow Pod direct mount

The FlowPod mounts directly on the VFF flow meter.

Litre Meter decided quite early on that the FlowPod would be its only supporting instrument, and it has completely transformed the way the VFF range can be used.

Designed as Exi and Exd from the outset, the FlowPod was built in an enclosure small enough to be mounted directly onto the meter body, and gives Litre Meter an innovative method of incorporating extra functionality like reverse flow and redundancy measurement.
For Litre Meter, introducing the FlowPod to the VFF range was a great way to combine multiple design elements, gathered over 30 years of experience, to make an impressive and useful meter with a focus on utility plus weight and size reduction.
The 2015 VFF range includes more than 800 end-user drawings, representing more than 115,000 meter combinations and covering almost every conceivable possibility. While previously, around 80% of Litre Meter’s sales were for custom products, the introduction of the FlowPod means that only 5–10% of meters will now need any extra engineering at all. Most customers can simply access instant PDFs of general arrangement drawings, parts-list drawings and lifting diagrams, together with STEP files, as part of their Litre Meter quotation.
For Litre Meter, this means a faster sales cycle and more revenue; for the customer, it means much faster quotation, production and manufacturing times. 2015 has already been a big year for Litre Meter, and by raising its game and producing a range of meters without equals, it has truly cemented itself as a top-tier supplier of flowmeter technology to the chemical injection industry.

First published in Gas Technology Review www.gas-technology-review.com

 

LITRE METER REVAMPS VFF RANGE

IMG_9572 LF03 white bgWe recently re-designed our popular VFF (Viscous Fluid Flowmeter) range of positive displacement flowmeters. The innovations in VFF technology make it ideal for bespoke flow measurement.

Innovations include a new compact size and design with reduced weight using high strength material specifications for high pressure applications. The new range of meters is suitable for low and high viscosity liquids at pressure ratings from 414 bar right up to 4,000 bar (60,000 psi). The range covers the measurement of fluids from 0.3 centistokes (cSt) to 100,000 cSt and flow rates of 0.0008 l/hr to 16,200 l/hr.

We have 40 years’ experience in successfully designing and manufacturing bespoke flowmeters for extreme environments for the most demanding industries and applications.

The VFF series has been distilled into one series to meet the specific requirements of chemical injection flowmetering. The new 2015 VFF range uses the same ultra-reliable rotary/oscillating piston technology that Litre Meter has developed and refined over the past 30 years. With one moving part the flow meter is a robust and low maintenance component within a chemical injection system.

The VFF range has a wide of standard options so we can quickly respond to fulfill most chemical injection enquiries. A full drawing package is available detailing every option in either PDF or STEP formats.

Specifying the right meter for a system is now even easier to specify with a new VFF meter software, a step-by-step builder that takes the user through all the meter options available. When the meter has been selected the user can search the Litre Meter database of over 400 general arrangements and parts listing drawings. For more details the user can browse 3D STEP files for the correct meter to download and insert into the skid assembly.

Meters are constructed from 316L stainless steel, Duplex Super Duplex, titanium and 6Mo. Other materials are available on request. Standard connections include NPT, Autoclave, ANSI flanges, Grayloc hubs, Galperti hubs and Techlok hubs. Two wire Exia and 2/4 wire Exd versions are available and 4-20mA, HART7 communications is standard with new pickup sensor capabilities.

Other innovations in the 2015 VFF range include a new rotatable and positionable Exd approved display union, new sensing options with increased reliability, reverse flow detection and increased resolution.

We are excited about the new range. The new compact and lightweight design has been developed specifically for integration within chemical injection skids. Its footprint is further reduced because positive displacement flowmeters don’t require straight lengths of pipe in the system before or after the meter.

We have also responded to industry demands with regard to lifting requirements for offshore by adding lifting eyes manufactured from certified forged material to every meter that weighs 16 kg or more.

New reed sensors now available

IMG_9574 sensor white bgWe have launched new sensor solutions to complement our revamped range of VFF flowmeters.

Our reed sensor package has been improved and now comes in a 316 stainless steel enclosure which is easy to install within the VFF range. The sensor comes complete with two reed switches that can be set for reverse flow detection or redundancy.

The sensor is tested to one billion pulses and environmentally tested in accordance with BS EN 13628-6: 2006. It is temperature rated to -20 to +80°C and it is available with the two or four wire Flowpod – the new explosion proof flow indication display unit for Litre Meter positive displacement flowmeters.

The non-wetted part has an M6 connector and the sensor is compact and designed for use at high pressures.

The new optional field sensor package comes in the same robust 316 stainless steel housing in order to make the sensors interchangeable with one another. The field sensor enables the output resolution of the VFF meter to be increased by a factor of twelve and it can still detect reverse flow.

Litre Meter strengthens South Asia team

LM1 - Claus Weihermueller(1)As part of part of the TASI group of companies Litre Meter now has new representation in Singapore. A new KEM/TASI Flow office in Singapore has been established with Claus Weihermueller appointed as regional manager of KEM/TASI Flow Asia Pacific & Middle East Operations. 
 
Claus has spent the past 15 years working in the field of flow metering and has been living and working in Singapore for eight years. He will promote and further expand the KEM/TASI business in the region, including Litre Meter.

Slim line customisation

Litre Meter’s ability to highly customise its meters has led to the company winning a significant order to supply meters to a company that produces hydraulic systems to the oil and gas industry. The fluid to be measured was Castrol Transaqua HT 2, with a viscosity of 3,95 cSt at 20 degree Celsius. The meters were bespoke slimline ones with a wide turn-down to allow for additional meters on a skid.

VFF positive displacement meters had to be made to operate at different pressures and flow ranges with different connections ranging from a VFF8 meter with a design pressure of 44 Bar, a scale of 0.3-30L/min with 25mm Female BSPP or equivalent size connections up to HP20 Flowmeters designed to work at a pressure of 950 Bar with a scale of 0.1-10L/min and 3/8” MP Autoclave connections.

All the flowmeters were located and certified for in Zone 2, Gas group IIB and Temperature class T3 so had to be EEx D or E. The minimum accuracy had to be within ±1.0% of full scale and the meters were constructed from 316SS quality stainless steel for all wetted parts.

The solutions provided were:

VFF8/690bar/AGPVD/V/9/16″AE MP

VFF8/1035Bar/AGPVD/V/9/16AE MP

HF20/207Bar/AGPDV/V/1″NPT all with

Fpod-RS-15-OC-I-H1-ATEX-V

Significantly we were able to offer measurement over the whole of the flow ranges required which competing flowmeter manufacturers were not able to deliver. In addition, the bespoke slimline VFF8 1035bar on drawing enabled the end user to get an additional meter on the skid without having to increase the available space.

Now we are 40

LM1 - Mug shotLitre Meter is 40 this year and to celebrate we are giving away commemorative mugs.

To get yours while stocks last email us at sales@litremeter.com and we will get one in the post.

See you at ACHEMA

Staff from Litre Meter will be at the ACHEMA exhibition in Frankfurt in 2015. We will be joining over 3,000 other exhibitors at the show.

ACHEMA will this year be focusing on products, technologies and solutions for the bio-based economy, industrial water management and innovative process analytical technology. At Litre Meter we have solutions for flow control and measurement in all three areas.

To register for the show visit the ACHEMA website.

Next Generation Flowmeters for Fluid Measurement and Control Solutions

Charles Wemyss, Litre Meter Limited

Types of Flowmeters fall into many categories. One could use the involvement of moving parts and electronics to define this. Mechanical meters, used and invented before domestic electricity was prevalent must be Old Generation. These would include what you and I have outside our houses for the measurement of domestic water. They would also include meters in our gas supply for the measurement of our consumption of gas. The very first turbine meters credited to Woltmann in 1790 were considered for calculating the loss of energy in open canals. It would be true to say that these were used for counting or totalising flow rather than providing an instantaneous rate display or output.

From the Old to the New

Those using electricity or electronics with a moving part like a rotor are also Old Generation as turbine meters have been around for several decades, for example. The first of these were axial turbine types developed, in essence from Woltmann, in the Second World War for accurately determining the fuel consumption of military aircraft and torpedoes. The pick-up or sensor with a magnet and rotating conductor enabled the number of rotations to be counted, totalised and used for rate display.
If we define Next Generation meters as having no moving parts so that the definition encompassed Thermal, Coriolis, Ultrasonic and Electromagnetic, then there would be a modern outlook. Apart from the fact that Faraday tried making an electromagnetic meter to measure the River Thames almost 200 years ago! He only failed because his instrumentation wasn’t sophisticated enough.
The obvious question to ask is: What is Next Generation, What is Current Generation and What is Old Generation? We can be certain that Old Generation does not mean unusable. We can also be certain that Old Generation in some people’s eyes is more than adequate for various tasks. This article explores the provenance of some flowmeter technologies, what might be round the corner and how to select the best meter for each project.

Some new and not-so-new flow measurement techniques:

New Technology

Coriolis, inertial force was first formulated by Gustave Coriolis in 1835 but MicroMotion didn’t release a commercial unit until 1977.

Electromagnetic, proven by Faraday but commercially produced from 1952. *Ultrasonic, from 1963.

Vortex, using the van Karmann effect of the generation of alternate vortices past a bluff body commercially from 1969, famously spotted by Leonardo da Vinci in 1504.

Thermal, hot wire anemometers were used from the early 1900s, commercially from the 70s.

Sonar, unconventional and measures turbulence since 2003.

Optical, measuring the speed and direction of individual particles using a laser beam, in research labs in the 70s and 80s but only commercially used in flare gases.

Traditional Technology

Differential Pressure like an orifice plate or Dall tube with a separate differential pressure transmitter. Also nozzles, pitots, Venturis and wedges. Still the most popular non-domestic meter type.

Positive Displacement, commercially pre 1830s for diaphragm gas meters with sheepskin diaphragms and sheet steel enclosures.

Turbine, first drawn up in 1790, commercially available post Second World War.

Variable Area, available for most of the 20th century.

Low Flow technology and the next ten years

There are various technologies that present themselves for low flow shown below. Many of the others mentioned elsewhere do not scale effectively.

Coriolis: Most manufacturers concentrate on ½” (15mm) and above. The issues of balance and producing thin wall tube to the required dimensional tolerances are hard to overcome. Smaller sizes exacerbate this.

Thermal: Microelectromechanical systems (MEMS), generally 0.01 mm to 0.1 mm in size, consist of a CMOS circuit on a thin silicon substrate. For lower flows these will replace a larger heated element and sensor. Liquids have a massively different thermal conductivity so the same device can measure at grams per hour rather than grams per minute.

Positive Displacement: Generally their purpose is to positively measure a trapped volume of fluid ? either gas or liquid. Gas versions tend to be for higher flows with the most popular one being used for domestic gas measurement. At lower flow the leakage between successive volumes is too large for effective measurement. For liquids where there is more viscosity the PD meters work well. Developments focus on some novel types and constant improvements to existing designs. There is a law of diminishing returns as the smaller the mechanical parts are, the harder they are to manufacture accurately. Also, leak paths are proportionally larger. One of the new types is the pendulum. This has one moving part with low mass and minimal friction loss, enabling it to respond to extremely low flow volume rates from 0.3 litres/hour. Unusually, this unit only works with viscosities up to 5 centiStokes. The rotary piston meter also has one moving part. In terms of flow rate, like most PDs, these prosper on viscosity. At 10 cSt a typical meter will start measuring at 0.08 l/h and when water is measured this increases to 0.4 l/hr.

In line ultrasonic: What happens when the pipes reduce in size and the type where a sensor is clamped on the outside of the pipe is no longer applicable? The sensors are mounted inside the pipe usually contrived in the shape of a U so that the ultrasound is passed between sensors at the base of the U. By knowing the diameter of the tube and the velocity between sensors, the volumetric flow can be calculated. Liquid flow rates down to 2 ml/min can be measured.

So if it’s not the methods of measurement we use that define Next Generation what is it? Perhaps: intelligence? The rise of smart meters i.e. those with digital communications and with the ability to self-verify are undoubtedly modern but were defined decades ago and have been in use for many years.

What’s Next?

Wireless communication is similarly up-to the- minute. HART digital communication has been around since the mid-1980s when it was developed by Rosemount Inc. for a range of measuring instruments, not just flowmeters. The HART foundation was formed in 1993 and the wireless version came along in 2007. So quite modern but Next?
So, is it the flowmeters that inhabit university laboratories and the R&D departments of flowmeter manufacturers that constitute Next Generation? Can we speculate what a cutting edge meter might look like in ten years’ time?

No Moving Parts

It would be fair to say that this Future meter would have no moving parts. This improves the chances of long term use as it would not suffer from mechanical degradation either planned or unplanned. It would ideally be non-invasive i.e. it would fit on the outside of a pipe and nothing would actually breakthrough the pipe wall. Currently, just ultrasonic meters match this criterion so let’s say that’s less than likely and the meter will therefore be non-intrusive. The sensor will break through the pipe wall but won’t impede the flow or perhaps just negligibly. What will the sensor measure, what techniques will it employ? That’s the $64,000 question. A single sensor is less likely as there will have to be a reference point for comparison.
Probably two sensors set apart, then, monitoring a property of the fluid. The clever part will be the intelligence of the signal processing; looking for perturbations in the signal amplitude and comparing it to the next sensor. Dumping thousands of comparisons for the sake of a few, locking onto patterns and pumping out high strength signals. In fact, the real hurdles will be firstly customer acceptance and secondly, electronic component obsolescence. Will the customer accept this meter and will it continue to find the small perturbations in property? Can he see it in action? Does he get a sense of goodness in the signal, in the rejection rate? What if the pipe vibrates, if the temperature ramps up, if the ‘property’ disappears? Then we find out that metering and measuring is about confidence, experience rather than Next Generation.

Bringing the Oil and Gas Industry Up-to-Date

The Oil & Gas industry is relatively conservative, relatively slow moving. The prevalence of HART and 4-20 mA signals decades after their introduction speaks volumes. Wireless, Bluetooth and fancy bus protocols are only just now making significant in-roads offshore. The creep of domestic innovation exemplified by the rise of the smart phone encourages instrument designers to bring their act up-to-date. Most instrumentation can only be compared with the most basic mobile phone. There is an inherent expectation that the modern user will have something easy-to-use, colourful and dangerously (?) customisable. The smartphone has many different uses of course beyond that of making calls. Arguably, it’s an instrument display in its own right. The logical conclusion is that the meter ‘display’ will be with the operator the whole time, in his/her hand. The obsolescence of components that bugs the subsea side of the industry is irrelevant in the actual instrument as this is replaced by the mobile phone and it’s ‘app’.
That still leaves the problem of the fast-moving world of miniature components for the clever parts – that will always be a thorn in the side of designers. Just as with most technologies, we’re not trying to design something to last for 30 years; the likelihood is that it will be overtaken by a new Next Generation device in ten years and then again in twenty years. All we can hope for is that the unit is still working in ten and twenty years and only needs replacing in thirty.
To select the best flowmeter for each application it is not just a question of looking up the first flowmeter you thought of on Google. Nor is it asking the engineer on the next desk or even consulting the internal specification guides issued by your employers. And it certainly shouldn’t be by selecting the cutting-edge meter of the day. It should be by consulting a flowmeter specialist – a specialist that has a wide range of solutions, not just one that is shoehorned into every application. Ideally, an independent specialist who can give unbiased advice and who will, if necessary, recommend an external solution.

Looking to the Future

In conclusion, the Next Generation of flowmeters is already operating, they’re already proven and they’re probably on the specification lists. Most applications can be met, more than adequately, by existing techniques. But the manufacturers aren’t standing still. They’re continually leveraging current technology with creeping demands. It’s more evolutionary than revolutionary but we’re all getting there – safely, economically and technically.

Safety research highlighting key ‘drivers’

Results of our first survey into safety issue in the oil and gas industry have shown that concerns over risks to personnel and the environment are key drivers for the implementation of international safety standards for instrumentation.

It will be interesting to see how the results of that survey ? which concentrated on Safety Integrity Levels (SIL) ? compare with the results of the second (still current) survey which focuses on the Pressure Equipment Director (PED). You can take part in our PED survey until 5 September by going to http://tiny.cc/ped. One lucky participant will win a Kindle for taking part.

Our ‘SIL survey’ gathered the opinions of senior engineers worldwide with technical design and management roles within their organisations. It showed that when specifying flowmeters and other instruments, environmental safety (70 per cent) was cited as the main reason for safety standard compliance, followed by business-critical concerns including personnel safety (59 per cent) and maintaining process integrity (65 per cent).

Risks of injury to personnel (70 per cent), risk of explosion (65 per cent) and damage to the environment (50 per cent) were the chief concerns relating to the consequences of equipment failure. Business concerns including costs of shutdown (25 per cent) and damage to equipment (15 per cent) were of less significance.

While the majority of companies in the oil and gas sector comply with an international safety standard for instrument specification a significant number ? almost 40 per cent ? do not, the survey found. However, most of these stated that they will be seeking to comply with an international safety standard in the future where relevant.

One of the aims of the research was to find out to what extent engineers use SIL in specifying equipment and what reliance they place upon it.

Almost 40 per cent said that SIL level 1 was the minimum acceptable for instrumentation in their operations with 22 per cent citing level 2, 26 per cent stating level 3 and just 13 per cent saying that the highest level (level 4) is the minimum acceptable.

We wanted to make sure that our manufacturing focus is on safety in relation to both the environment and industry trends. These figures show that by complying with SIL we have a reliable benchmark for safety and reliability.

SIL was considered to be an effective measure of safety performance by 70 per cent of respondents but 54 per cent believed that a lack of consistency in applying SIL across all functional safety standards significantly affects trust in products designed to work in particular SIL level environments.

Now we are asking a similar range of questions about PED ?and with a similar purpose.

There has been increased focus on safety issues in the offshore sector over recent years. We want to make sure that our manufacturing focus is on safety in relation to both the environment and industry trends.

To take the PED survey visit http://tiny.cc/ped and spend just a few minutes answering the questions.

SIL is the degree of likelihood that a safety instrumented function will operate effectively when it is required to. Four SILs are defined within the European Functional Safety standards based on the IEC 61508 standard, SIL 4 being the most dependable and SIL 1 being the least, taking into account such things as the development process and safety life cycle management.